Affiliation:
1. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
Abstract
Flexibility is a vital property of stents and different stent structures lead to different flexibility behaviors. In this study, the finite element analysis was adopted and a virtual bending deformation was imposed to quantify the effects of linker pattern, linker number, bending direction and linker location on flexibility. Stent performance indicators, including stress distribution, deformation patterns and bending stiffness, were examined. Results indicate that higher levels of stresses are found on the linker struts, associated with much larger deformation. The linker number plays the most significant role in flexibility, and simply decreasing linker number could result in a sharp increase in flexibility and a decrease in stress. The linker pattern has great impact on stent flexibility, especially on the behavior of self-contact. Stents with different linker patterns could respond differently in the course of bending, and the stent with an offset peak-to-peak linker pattern is the best choice. It is also found that stent flexibility can be improved when fewer linkers lie in the compression area and the linker directions between two adjacent rows are consistent. The results obtained could provide useful information for the improvement of stent design and clinical choice.
Publisher
World Scientific Pub Co Pte Lt
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献