EMPIRICAL MODE DECOMPOSITION-BASED PROCESSING FOR AUTOMATED DETECTION OF EPILEPSY

Author:

MURALIDHAR BAIRY G.1,HAGIWARA YUKI2

Affiliation:

1. Faculty Department of Biomedical Engineering, Manipal Institute of Technology, Manipal 576104, India

2. Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489 Singapore

Abstract

Epilepsy is a chronic illness of the brain characterized by recurring seizure attacks. Electroencephalogram (EEG) can record the electrical activity of the brain and is extensively used to analyze and diagnose epileptic seizures. However, the EEG signals are highly non-linear and chaotic and are difficult to analyze due to their small magnitude. Hence, empirical mode decomposition (EMD), a non-linear technique, has been widely adopted to capture the subtle changes present in the EEG signals. Hence, it is an added advantage to develop an automated computer-aided diagnostic (CAD) system to detect the different brain activities from the EEG signals using machine learning approaches. In this paper, we focus on the previous works which have used the EMD technique in the automated detection of normal or epileptic EEG signals.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic focal EEG identification based on deep reinforcement learning;Biomedical Signal Processing and Control;2023-05

2. A patient-independent classification system for onset detection of seizures;Biomedical Engineering / Biomedizinische Technik;2021-02-08

3. Seizure Classification on Epileptic EEG Using IMF-Entropy and Support Vector Machine;Proceedings of the 1st International Conference on Electronics, Biomedical Engineering, and Health Informatics;2021

4. Scalp EEG classification using deep Bi-LSTM network for seizure detection;Computers in Biology and Medicine;2020-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3