A 3D MODEL FOR MURAL-CELL-MEDIATED DESTRUCTIVE REMODELING DURING EARLY DEVELOPMENT OF A CEREBRAL ANEURYSM

Author:

NABAEI MALIKEH1,FATOURAEE NASSER1

Affiliation:

1. Biological Fluid Mechanics Research Laboratory, Faculty of Biomedical Engineering, Amirkabir University of Technology, (Tehran Polytechnic), Tehran, P. O. Box 15875-3413, I.R. Iran, Postal Code 15914, Iran

Abstract

Development of a diagnostic tool for predicting the behavior of cerebral aneurysms was the inspiration of many research groups in recent years. In the present study a fluid–solid-growth (FSG) model for the early development of a cerebral aneurysm was presented in a 3D model of the internal carotid artery (ICA). This model is the result of two parallel mechanisms: first, defining arterial wall as a living tissue with the ability of degradation, growth and remodeling and second, full coupling of the wall and the blood flow. Taking into account the shear dependent nature of elastin degradation and mural-cell-mediated destructive activities, here, the degradation process has been linked to high effective stress of the vascular wall. The evolving properties of the elastinous and collagenous constituents have been predicted during the early development of the aneurysm and the code is applicable to more complicated aneurismal growth models.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3