A BIOMECHANICAL STUDY OF THE EFFECTS OF FLEXION ANGLE ON THE INDUCTION MECHANISM OF CERVICAL SPONDYLOSIS

Author:

CAO FU1,FU RONGCHANG1ORCID,WANG WENYUAN1

Affiliation:

1. School of Mechanical Engineering, Xinjiang University, Urumqi 830047, Urumqi, P. R. China

Abstract

Lesions in facet joints such as bone hyperplasia and degenerative changes in the intervertebral discs, can compress nerve roots and the spinal cord, leading to cervical spondylosis (CS). Lesions in these parts of the spine are commonly related to abnormal loads caused by bad posture of the cervical spine. This study aimed to understand the potential mechanical effects of load amplitude on cervical spine motion to provide a theoretical basis for the biomechanical causes of CS, and to provide a reference for preventing of the condition. In this study, a finite element model of the normal human cervical spine (C1-C7) was established and validated using an infrared motion capture system to analyze the effects of flexion angle on the stresses experienced by intervertebral discs, the anterior edge of the vertebral body, the pedicle, uncinate and facet joints. Our analysis indicated that the intervertebral disc load increased by at least 70% during the 20 to 45 flexion of the neck with 121% load increase in the vertebrae. In the intervertebral discs, the stress was largest at C4-C5, and the stress was moderate at C5-C6. These results are consistent with clinical CS prone site research. According to Wolff’s law, when bones are placed under large stresses, hyperplasia can result to allow adaptation to large loads. Increased cervical spine flexion angles caused the proliferation of bone in the above-mentioned parts of the spine and can accelerate accelerating the appearance of CS.

Funder

national natural science foundation of china

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biomechanical effect of age-related structural changes on cervical intervertebral disc: A finite element study;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2022-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3