COMPARISON AND EXPERIMENTAL VALIDATION OF TURBULENCE MODELS FOR AN AXIAL FLOW BLOOD PUMP

Author:

WANG SHUAI1,TAN JIANPING1,YU ZHEQIN1

Affiliation:

1. College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, P. R. China

Abstract

Computational fluid dynamics (CFD) has become an essential tool for designing and optimizing the structure of blood pumps. However, it is still questionable which turbulence model can better obtain the flow information for axial flow blood pump. In this study, the axial flow blood pump was used as the object, and the influence of the common turbulence models on simulation was compared. Six turbulence models (standard [Formula: see text]–[Formula: see text] model, RNG [Formula: see text]–[Formula: see text] model, standard [Formula: see text]–[Formula: see text] model, SST [Formula: see text]–[Formula: see text] model, Spalart–Allmaras model, SSG Reynolds stress model) were used to simulate the pressure difference and velocity field of the pump. In parallel, we designed a novel drive system of the axial flow blood pump, which allowed the camera to capture the internal flow field. Then we measured the flow field in the impeller region based on particle image velocimetry (PIV). Through the comparison of experiments and simulation results, the average errors of velocity field obtained by the above models are 30.97%, 19.40%, 24.25%, 15.28%, 28.51%, 23.00%, respectively. Since the SST [Formula: see text]–[Formula: see text] model has the smallest error, and the streamline is consistent with the experimental results, it is recommended to use SST [Formula: see text]–[Formula: see text] model for numerical analysis of the axial flow blood pump.

Funder

National Nature Foundation of China

Postgraduate Independent Exploration Project of Central South University

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3