AN EMOTION RECOGNITION MODEL BASED ON LONG SHORT-TERM MEMORY NETWORKS AND EEG SIGNALS AND ITS APPLICATION IN PARAMETRIC DESIGN

Author:

ZHOU MINNING1ORCID,ZHOU LIN1ORCID,PAN MENGJIAO1ORCID,CHEN XIANG1ORCID

Affiliation:

1. School of Design, Jiangnan University, Jiangsu, Wuxi 214122, P. R. China

Abstract

One of the design objectives of a product is to create a positive emotional user experience. Through careful design, the product can evoke emotional resonance in users and stimulate their pleasure and satisfaction. Therefore, emotion recognition is crucial for parameterized product design. Considering that emotion recognition based on electroencephalogram (EEG) signals is more objective and accurate compared to methods such as text and surveys, this paper proposes an emotion analysis model based on long short-term memory (LSTM) and EEG and applies it to parameterized design. The main contributions of this paper are as follows. (1) Constructing a high-accuracy emotion recognition model. First, EEG data reflecting the characteristic patterns of brain activities in different emotional states are collected through EEG electrodes. Then, the EEG data are input into the LSTM network for training, enabling it to learn and capture the features associated with emotional states. During the training process, the model learns to extract crucial emotional features from the EEG data for emotion state recognition. This model can automatically learn emotional features, handle long-term dependencies and provide a more accurate and reliable solution for emotion recognition tasks. (2) Creating an EEG dataset specifically for evaluating emotions related to a product and using the trained emotion recognition model to classify this dataset, obtaining emotion classification results. The emotion classification results can be used to determine which parameter designs in product development need to be retained or discarded. These parameter designs can involve aspects such as user experience, functionality, aesthetics, usability and user-friendliness. Decisions can be made based on the emotion classification results to improve the quality and user satisfaction of the product.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3