NON-INVASIVE ESTIMATION OF DIABETES RELATED FEATURES FROM ECG USING GRAPHICAL PROGRAMAMING LANGUAGE AND MATLAB

Author:

KALPANA V.1,HAMDE S. T.2,WAGHMARE L. M.2

Affiliation:

1. Department of Instrumentation Technology, P.D.A. College of Engineering, Gulbarga - 585102 (Karnataka), India

2. Department of Instrumentation Engineering, SGGS Institute of Engineering and Technology, Vishnupuri, Nanded - 431606 (Maharashtra), India

Abstract

Electrocardiography deals with the electrical activity of the heart. The condition of cardiac health is given by the electrocardiogram (ECG). ECG analysis is one of the most important aspects of research in the field of biomedical sciences and healthcare. The precision in the identification of various parameters in the ECG is of great importance for the reliability of an automated ECG analyzing system and diagnosis of cardiac diseases. Many algorithms have been developed in the last few years, each with their own advantages and limitations. In this work, we have developed an algorithm for 12-lead ECG parameter detection which works in three steps. Initially, the signal is denoised by the wavelet transform approach using a graphical programming language called LabVIEW (Laboratory Virtual Instrument Engineering Workbench). Next, primary features are detected from the denoised ECG signal using Matlab, and lastly, the secondary features related to diabetes are estimated from the detected primary features. Diabetes mellitus (DM), which is characterized by raised blood glucose levels in an individual, affects an estimated 2–4% of the world's population, making it one of the major chronic illnesses prevailing today. Recently, there has been increasing interest in the study of relationship between diabetes and cardiac health. Thus, in this work, we estimate diabetic-related secondary ECG features like corrected QT interval (QTc), QT dispersion (QTd), P wave dispersion (PD), and ST depression (STd). Our software performance is evaluated using CSE DS-3 multi-lead data base and the data acquired at SGGS IE & T, Nanded, MS, which contains 5000 samples recorded at a sampling frequency of 500 HZ. The proposed algorithm gives a sensitivity of 99.75% and a specificity of 99.83%.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3