PREDICTING CARDIAC HEALTH USING SUB-COMPONENT OF A PHONOCARDIOGRAM

Author:

ARORA SHRUTI1ORCID,JAIN SUSHMA1ORCID,CHANA INDERVEER1ORCID

Affiliation:

1. Computer Science & Engineering Department, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India

Abstract

There has been a steady rise in the number of deaths throughout the world due to heart diseases. This can be mitigated, to a large extent, if cardiovascular disorders can be detected timely and efficiently. Electrocardiograms (ECGs) and phonocardiograms (PCGs) are the two most popular diagnostic tools used for detecting cardiac problems. Another simple and efficient method for quickly identifying cardiovascular illness is Auscultation. In this work, the cardiac sound signal has been transformed into its equivalent spectrogram representation for detecting cardiac problems. The novelty of the proposed approach is the deployment of customized transfer learning (TL) models on sub-component of a spectrogram called Harmonic Spectrogram, instead of taking full spectrogram. Experiments have been conducted using PhysioNet 2016, which is considered a benchmark dataset. TL models, viz. MobileNet, DenseNet121, InceptionResnetV2, VGG16, and InceptionV3 have been put to use for categorizing cardiac sound waves as normal or pathological. The results exhibit that the MobileNet has achieved greater accuracy (93.45%), recall (92.46%), Precision (97.82%), F1 Score (95.06%) than many of the peers.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3