Affiliation:
1. Department of Biomechanics, Science and Research Branch, Islamic Azad University, Tehran, Iran
Abstract
The aim of this study was to model the blood flow and predict related hemodynamics characteristics in healthy superior mesenteric artery (SMA) and saccular aneurysm cases. A fluid–structure interaction (FSI) method was performed, using an arbitrary Langrangian–Eulerian mesh. The computational mesh was generated using anatomical data from available human computed tomography (CT)-images. Combining constitution and momentum equations, projection method, the discretized resultant equation were numerically solved for velocity, pressure, shear stress and vortices for healthy/aneurysmal artery. The results including velocity contours, pressure contours, shear rate values, and vortices were obtained and analyzed for three main steps including peak systole, diastole, and end of cardiac cycle. Profiles show the varying velocity and pressure for a pulsatile flow input before and after aneurysms. They also show the formation of single or multiple vortices at aneurysmal area and decrease of wall shear stress with aneurysm enlargement. Furthermore, shear rate values at the neck of aneurysms exceed throughout the entire cardiac cycle. The outcome of the computational analysis is then compared to information available on pressure, vortices and wall shear stress from some clinical findings.
Publisher
World Scientific Pub Co Pte Lt
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献