MODELING OF SUPERIOR MESENTERIC ARTERY ANEURYSM USING FLUID–STRUCTURE INTERACTION

Author:

EBRAHIMI BAHARAK1,HASSANI KAMRAN1

Affiliation:

1. Department of Biomechanics, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

The aim of this study was to model the blood flow and predict related hemodynamics characteristics in healthy superior mesenteric artery (SMA) and saccular aneurysm cases. A fluid–structure interaction (FSI) method was performed, using an arbitrary Langrangian–Eulerian mesh. The computational mesh was generated using anatomical data from available human computed tomography (CT)-images. Combining constitution and momentum equations, projection method, the discretized resultant equation were numerically solved for velocity, pressure, shear stress and vortices for healthy/aneurysmal artery. The results including velocity contours, pressure contours, shear rate values, and vortices were obtained and analyzed for three main steps including peak systole, diastole, and end of cardiac cycle. Profiles show the varying velocity and pressure for a pulsatile flow input before and after aneurysms. They also show the formation of single or multiple vortices at aneurysmal area and decrease of wall shear stress with aneurysm enlargement. Furthermore, shear rate values at the neck of aneurysms exceed throughout the entire cardiac cycle. The outcome of the computational analysis is then compared to information available on pressure, vortices and wall shear stress from some clinical findings.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3