MECHANICAL CHARACTERIZATION OF SPINAL DURA USING A PD-CONTROLLED BIAXIAL TENSILE TESTER

Author:

TAMURA ATSUTAKA1,YANO WATARU2,YOSHIMURA DAICHI3,NISHIKAWA SOICHIRO3

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan

2. Department of Mechanical Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan

3. Mechanical and Physical Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan

Abstract

In this study, we developed an equi-load biaxial tensile tester and applied it to a series of mechanical tests using specimens obtained from the porcine spinal dura mater. The dural sample exhibited a nonlinear and anisotropic behavior as it was more deformable in the longitudinal direction rather than in the circumferential direction at lower strains; i.e., mechanical response of the longitudinal direction was significantly compliant in the Toe region compared to that of the circumferential direction under 1:1 biaxial stretching. However, we have not observed a significant difference with respect to the resultant strain and Young’s modulus between the longitudinal and circumferential directions at higher strains or in the Linear region. Our results also indicated that the upper thoracic region (T1) was relatively compliant compared to the lumbar region (L), where the failure load was almost equal between them because the dural thickness of T1 was five-fold greater than that of L; i.e., spinal dura mater became stiffer and stronger at further distances from the brain. This shows structural effectiveness and may be preferable to mechanically protect the vulnerable spinal cord from externally applied impact loads.

Funder

JSPS KAKENHI

AMED-CREST

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3