RECOGNITION OF ATRIAL FIBRILLATION BASED ON CNN-LSTM AND LAPLACIAN SUPPORT VECTOR MACHINE

Author:

WANG YING1,LI YONGJIAN1,CHEN MENG1,HUO RUI1,LIU LEI1,LIANG YESONG1,WEI SHOUSHUI1ORCID

Affiliation:

1. School of Control Science and Engineering, Shandong University, 17923 Jingshi Road, Jinan, Shandong 250061, P. R. China

Abstract

Atrial fibrillation (AF) is a common arrhythmia associated with cardiac death and stroke. Therefore, the early detection of AF is of critical importance and the wearable long-term ECG monitoring system is one promising way. In order to assist the cardiologists in identifying potential AF in a tremendous amount of long-term ECG data, this study proposed an automatic detector combining deep learning and semi-supervised learning in view of the difficulty of obtaining a large number of labeled data in clinical practice. Three R-R interval features and two nonlinear features extracted from ECG samples, combined with 16-dimension deep learning features extracted by CNN-LSTM, are put into the semi-supervised machine learning model Laplacian Support Vector Machine (LapSVM) for AF detection. The proposed method showed very promising performance, with an accuracy of 99.63%, a sensitivity of 99.70%, a specificity of 99.57% and an F_score of 99.59% on the AFDB dataset. It still achieved an accuracy of 98% when the proportion of the training set was reduced, and achieved an accuracy of 96% on the SPHD collected clinically. The results show that the proposed method can classify AF and non-AF with a higher accuracy, and has excellent generalization performance in different categories of subjects, which is in line with clinical scenarios. The proposed method is also conducive to solving the clinical cases with little labeled data.

Funder

National Natural Science Foundation of China

Key Technologies Research and Development Program

Natural Science Foundation of Shandong Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3