EPILEPTIC EEG IDENTIFICATION BASED ON HYBRID FEATURE EXTRACTION

Author:

LIU XIAOCHEN1,SHEN JIZHONG1ORCID,ZHAO WUFENG1

Affiliation:

1. College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China

Abstract

Electroencephalogram (EEG) signals are widely used as an effective method for epilepsy analysis and diagnosis. For the establishment of an accurate and efficient epilepsy EEG identification system, it is very important to properly extract the features of EEG signals and select appropriate combination features. This paper proposes an automatic epileptic EEG identification method based on hybrid feature extraction. It uses temporal and frequency domain analysis, nonlinear analysis and one-dimensional local pattern recognition method to extract epileptic EEG features. Gradient energy operator and local speed pattern are proposed to better reflect typical feature in the active EEG signals measured during seizure-free intervals. The genetic algorithm is used to select the obtained hybrid features; then the AdaBoost classifier is used to classify epileptic EEG under various classification conditions. Classification results on the dataset developed by University of Bonn show that the proposed method can be used to classify normal EEG, interictal EEG and seizure activity with only a few features. Compared with related researches using the same dataset, the proposed method can obtain an equally satisfactory classification accuracy while the feature amount is reduced by 61–95%. In particular, the classification accuracy of the interictal and normal EEG can reach 99%.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatio-Temporal Variable Structure Graph Neural Network for EEG Data Classification;2023 6th International Symposium on Autonomous Systems (ISAS);2023-06-23

2. Localization of seizure onset zone with epilepsy propagation networks based on graph convolutional network;Biomedical Signal Processing and Control;2022-04

3. Human Emotion Recognition using EEG Signal in Music Listening;2021 IEEE 18th India Council International Conference (INDICON);2021-12-19

4. ESIMD : Epileptic seizure identification using metaheuristic deep learning technique;Expert Systems;2021-11-29

5. Graph Attention Network with Focal Loss for Seizure Detection on Electroencephalography Signals;International Journal of Neural Systems;2021-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3