Affiliation:
1. School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, VIC 3083, Australia
Abstract
It is a well-established fact that atherosclerosis in carotid bifurcation depends on flow parameters such as wall shear stress, flow pulsatility, and blood pressure. However, it is still not clearly verified how atherosclerosis can become aggravated when plaque experiences a high level of shear stress during advance stages of this disease. In this paper, fluid and structural properties in idealistic geometries are analyzed by using fluid-structure interaction (FSI). From our results, the relationship among blood pressure, stenotic compression, and deformation was established. We show that a high level of compression occurs at the stenotic apex, and can potentially be responsible for plaque progression. Moreover, wall shear stress and deformation are significantly affected by the degree of stenosis. Finally, through analysis of the FSI-based simulation results, we can better understand the parameters that influence flow through a stenotic artery and plaque aggravation, and apply the knowledge for the enhancement of clinical research and prediction of treatment outcomes.
Publisher
World Scientific Pub Co Pte Ltd
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献