OPTIMIZED DUAL-TREE COMPLEX WAVELET TRANSFORM AND FUZZY ENTROPY FOR MULTI-MODAL MEDICAL IMAGE FUSION: A HYBRID META-HEURISTIC CONCEPT

Author:

KUMAR N. NAGARAJA1ORCID,PRASAD T. JAYACHANDRA2,PRASAD K. SATYA3

Affiliation:

1. Department of E.C.E, JNTUK, Kakinada 533003, Andhra Pradesh, India

2. Department of E.C.E, RGMCET, Nandyal, Andhra Pradesh, 518112, India

3. Rector of Vignan’s Foundation for Science Technology and Research, Guntur, Andhra Pradesh, India

Abstract

In recent times, multi-modal medical image fusion has emerged as an important medical application tool. An important goal is to fuse the multi-modal medical images from diverse imaging modalities into a single fused image. The physicians broadly utilize this for precise identification and treatment of diseases. This medical image fusion approach will help the physician perform the combined diagnosis, interventional treatment, pre-operative planning, and intra-operative guidance in various medical applications by developing the corresponding information from clinical images through different modalities. In this paper, a novel multi-modal medical image fusion method is adopted using the intelligent method. Initially, the images from two different modalities are applied with optimized Dual-Tree Complex Wavelet Transform (DT-CWT) for splitting the images into high-frequency subbands and low-frequency subbands. As an improvement to the conventional DT-CWT, the filter coefficients are optimized by the hybrid meta-heuristic algorithm named as Hybrid Beetle and Salp Swarm Optimization (HBSSO) by merging the Salp Swarm Algorithm (SSA), and Beetle Swarm Optimization (BSO). Moreover, the fusion of the source images’ high-frequency subbands was done by the optimized type-2 Fuzzy Entropy. The upper and lower membership limits are optimized by the same hybrid HBSSO. The optimized type-2 fuzzy Entropy automatically selects high-frequency coefficients. Also, the fusion of the low-frequency sub-images is performed by the Averaging approach. Further, the inverse optimized DT-CWT on the fused image sets helps to obtain the final fused medical image. The main objective of the optimized DT-CWT and optimized type-2 fuzzy Entropy is to maximize the SSIM. The experimental results confirm that the developed approach outperforms the existing fusion algorithms in diverse performance measures.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3