COMPUTER SIMULATION OF COTRANSMISSION BY EXCITATORY AMINO ACIDS AND ACETYLCHOLINE IN THE ENTERIC NERVOUS SYSTEM

Author:

MIFTAHOF ROUSTEM1,AKHMADEEV N. R.2

Affiliation:

1. I-BIO Program, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea

2. Kazan Medical Institute, Kazan 420008, Tatarstan, Russia

Abstract

The role of cotransmission by α-amino-3-hydroxy-5-methyl-4-isoxalose propionic acid (AMPA), L-aspartate, N-methyl-D-aspartate (NMDA), and acetylcholine (ACh) as well as the coexpression of AMPA, NMDA, and nicotinic ACh (nACh) receptors on the electrophysiological activity of the primary sensory (AH) and motor (S) neurons of the enteric nervous system are numerically assessed. Results of computer simulations showed that AMPA and L-Asp alone can induce fast action potentials of short duration on AH and S neurons. Costimulation of nACh and AMPA receptors on the soma of the S neuron resulted in periodic spiking activity. A characteristic biphasic response was recorded from the AH neuron after coactivation of AMPA and NMDA receptors. Glutamate alone acting on NMDA receptors caused prolonged depolarization of the AH neuron and failed to depolarize the S neuron. Cojoint stimulation of the AMPA or nACh receptors was required to produce the effect of glutamate. The overall electrical response of neurons to the activation of NMDA receptors was long-term depolarization. Acetylcholine, AMPA, and glutamate acting alone or cojointly enhanced phasic contraction of the longitudinal smooth muscle. Treatment of neurons with AMPA, NMDA, and nACh receptor antagonists revealed intricate properties of the AH and S neurons. Application of MK-801, D-AP5, and CPP reduced the excitability of the AH neuron and totally abolished electrical activity in the S neuron. The information gained into the cotransmission by excitatory amino acids and acetylcholine in the enteric nervous system may be beneficial in the development of novel effective therapeutics to treat diseases associated with altered visceral nociception, i.e. irritable bowel syndrome.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3