CFD SIMULATIONS AND ANALYSES OF ASYMPTOMATIC AND SYMPTOMATIC NASAL AIRWAY OBSTRUCTIONS

Author:

MATARACI FURKAN1,KARIMOV ULVI1,OZDEMIR I. BEDII1,YILDIRIM DUZGUN2,ALTINDAG AYTUG3

Affiliation:

1. Fluids Group, Faculty of Mechanical Engineering, Istanbul Technical University, Gumussuyu 34437, Istanbul, Turkey

2. Department of Medical Imaging, Vocational School of Health Sciences, Acibadem University, Istanbul, Turkey

3. Otorhinolaryngology Department, Medical Faculty, Biruni University, Istanbul, Turkey

Abstract

The numerical simulations of the flow in nasal airways were performed for two different clinical cases. The results comprised the distributions of scalars at five different sections and included contours of pressure, velocity magnitude, turbulent kinetic energy and vorticity magnitude. Simulations showed the air branching occurring at the inferior meatus is unaffected by the variations in the volumetric flow rate or the changes in the flow regime through the olfactory cleft. However, the contractions and the following rapid change in the cross-section of the nasopharynx preclude the upward penetration of the vacuum field set by the lungs during the inhalation process. As a result, considerably low velocities and significant cross-sectional nonuniformities are observed, which lead to the appearances of the secondary flow structures and strong unsteadiness. Increased interactions between the airflow and the walls of the nasal cavity resulted in an increase in the vorticity on the right middle meatus and upper inferior meatus. The vorticity was also very high in the nostrils, where the flow was not fully developed.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accuracy of virtual rhinomanometry;Polish Journal of Medical Physics and Engineering;2023-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3