Affiliation:
1. Key Laboratory of Medical Biomechanics and Materials of Heilongjiang Province, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, P. R. China
Abstract
Skeletal muscle energy metabolism plays a very important role in controlling movement of the whole body and has important theoretical guidance for making exercise training plans and losing weight. In this paper, we developed a mathematical model of skeletal muscle excitation–contraction pathway based on the energy metabolism that links excitation to contraction to explore the effects of different metabolic energy systems on calcium ion changes and the force during skeletal muscle contraction. In this paper, a membrane potential model, a calcium cycle model, a cross-bridge dynamics model and an energy metabolism model were established. Finally, the physiological phenomenon of calcium ion transport and calcium ion concentration change of the sarcoplasm was simulated. The results show that the phosphagen system has the fastest metabolic rate and the phosphagen system has the largest impact on the explosive power of skeletal muscle exercise. The specific characteristics of the three metabolic energy systems supporting skeletal muscle movement in vivo were also analyzed in detail.
Funder
NSFC
Natural Science Foundation of Heilongjiang Province of China
Publisher
World Scientific Pub Co Pte Lt
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献