BIOFLUID FLOW THROUGH A THROTTLE VALVE: A COMPUTATIONAL FLUID DYNAMICS STUDY OF CAVITATION

Author:

LIU XIUMEI123,HE JIE1,ZHAO JIYUN1,LONG ZHENG1,LI WENHUA1,LI BEIBEI1

Affiliation:

1. China University of Mining and Technology, School of Mechanical and Electrical Engineering, P. R. China

2. Zhejiang University, The State Key Laboratory of Fluid Power, Transmission and Control, P. R. China

3. China University of Mining & Technology, Jiangsu Key Laboratory of Mine, Mechanical and Electrical Equipment, P. R. China

Abstract

Biofluid flow through a throttle valve is investigated numerically and experimentally in our paper. Numerical studies are performed in order to obtain the mass flow rate through the valve under different operating conditions. Pressure drop behind the throttle valve and formation of the vortex flow downstream has been evaluated. The vortices were mainly distributed on top of the valve rod, the corner of the channel and the corner of the valve seat. When valve opening increases, the vortices grow and cause higher pressure drop. In other words, more energy is lost due to these growing vortices and high viscosity of biofluid. Furthermore, experimental flow visualization is conducted to capture cavitation images near the orifice using high-speed camera. The initial position of cavitation occurred near throttle orifice while cavitation zone downstream is caused by circulating bubbles clusters. As the opening of the valve is decreased, the area and strength of vortices in the corner of the channel grow and cause higher pressure drop firstly, then decrease. In addition, there are a lot of bubble clusters on top of the valve rod and the corner of the valve seat, which flowed downstream and collapsed, then filled the entire channel. In general, the valve opening plays very important role in the performance of a throttle valve. The results would help to observe, understand and manage the cavitation phenomenon in a throttle valve, and improve the performance of throttle valves.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3