DEEP LEARNING-BASED FEATURE FUSION AND TRANSFER LEARNING FOR APPROXIMATING pIC VALUE OF COVID-19 MEDICINE USING DRUG DISCOVERY DATA

Author:

DHAYGUDE AMOL DATTATRAY1ORCID,HASAN MEHADI2ORCID,VIJAY M.3ORCID

Affiliation:

1. Senior Data & Applied Scientist, Seattle, Microsoft Corporation, Washington, USA

2. Graduate student, Department of Biology, University of Alabama at Birmingham, AL 35294-1170, USA

3. Department of CSE, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, Tamil Nadu, India

Abstract

The pandemic disease Coronavirus 2019 (COVID-19) caused thousands of infections and deaths globally. It is important to introduce new medicines to address the critical situation in the medical system. The determination of approximate pIC value is necessary for designing medicines based on molecular compounds. Generally, the approximation of pIC value is a lengthy process, so it is difficult and time-consuming. Hence it is essential to introduce a new technique for automatic approximation. In this research, a Convolutional Neural Network-based transfer learning (CNN-TL) is designed for approximating the pIC value. Initially, Simplified Molecular Input Line Entry System (SMILES) notation is extracted from SMILES string symbols using an entropy-based one-hot encoding matrix and the molecular formula-based encoding. The molecular features are then extracted from the input data using Lorentzian similarity and Deep Residual Network (DRN). The pIC value approximation is performed using the CNN-TL model, where the Visual Geometry Group Network-16 (VGGNet-16) is used to fetch hyperparameters used to initialize the CNN. The experimental results proved that the designed CNN-TL technique achieved minimum error rates with normalized values of 0.406 for R2, 0.516 for Root Mean Square Error (RMSE), 0.267 for Mean Square Error (MSE), and for 0.277 Mean Absolute Percentage Error (MAPE).

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bio-Inspired Metaheuristic Feature Fusionmethod for Multi-Biometric Identification;2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO);2024-03-14

2. A Novel Approach to Breast Tumor Detection: Enhanced Speckle Reduction and Hybrid Classification in Ultrasound Imaging;Computers, Materials & Continua;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3