FINITE ELEMENT ANALYSIS OF CUSTOMIZED KNEE IMPLANTS BY VARYING LOADS DURING FLEXION-EXTENSION MOVEMENT

Author:

ALSHEWAIER SHADY A.1,ALSHEHRI MAJED ALI GHURMALLAH2,BEGUM S. SABARUNISHA3,SIKKANDAR MOHAMED YACIN2ORCID,ALMUKIL ALI ABDULLAH A.2,ALHAZMI AISHAH MOHAMMAD4

Affiliation:

1. Department of Physical Therapy, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia

2. Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia

3. Department of Biotechnology, P. S. R. Engineering College, Sivakasi 626140, Tamil Nadu, India

4. Ad Diriyah Hospital, Ministry of Health, Saudi Arabia

Abstract

A customized knee implant numerical modeling using finite element analysis (FEA) during flexion extension has been investigated in this paper with varying loads with an objective of studying its kinematics. Computed tomography (CT) images of 15 osteoarthritis subjects’ images were used in this work. Various morphological characteristics were extracted from clinical images using a commercial CAE software and biomechanical properties were studied on applying standard loads on customized implant and off-the-shelf (OTS) implants. Patient-specific knee implants have been designed according to the morphological characteristics and bone dimension of patient with compressive loads (1500, 1700 and 3000[Formula: see text]N) during normal gait and were compared with the normal knee. Results showed that the stresses are distributed equally to the spacer and the tibial plate, unlike the standard femoral component where the stresses get concentrated on the cut edges. In compressive load, active stress and strain ([Formula: see text]–20[Formula: see text]MPa) are lesser ([Formula: see text]) and in flexion extension also lesser with a scaling factor of 0.785 and 1.0. The designed implant was found to produce similar biomechanical properties when compared to normal knee joint and thus it can be considered as a valuable implant and could replace the standard OTS knee implants.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3