Affiliation:
1. Department of Mechanical Engineering, School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
Abstract
Hydraulic performance is an especially important factor for maglev axial blood pumps that have been used in patients with heart disease. Most maglev axial blood pumps basically consist of a straightener, an impeller and a diffuser. The diffuser plays a key role in the performance of the maglev axial blood pump to provide an adequate pressure head and increase the hydraulic efficiency. Maglev axial blood pumps with various structural diffusers exhibit different hydraulic performance. In this study, computational fluid dynamics (CFD) analysis was performed to quantify hydrodynamic in a maglev axial blood pump with a flow rate of 6 L/min against a pressure head of 100 mmHg to optimize the diffuser structure. First, we design the prototype of diffuser structure based on traditional design method, establish blood flow channel models using commercial software ANSYS FLUENT. Specifically, compare the performance of pump with the diffusers of different parameters, such as the leading edge blade angle, blade-thickness and blade-number. The results show that the diffuser structures with the thickening blade by arc airfoil law, blade-number of 6, leading edge blade angle of 24°, and trailing edge blade angle of 90° exhibited the best hydraulic performance which could be utilized in the optimization design of maglev axial blood pumps.
Publisher
World Scientific Pub Co Pte Lt
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献