DEVELOPMENT AND VALIDATION OF A METHOD TO ENHANCE AUDITORY ATTENTION DURING CONTINUOUS SPEECH-SHAPED NOISE ENVIRONMENT

Author:

DU YIHANG1ORCID,FANG WEINING2,QIU HANZHAO1

Affiliation:

1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China

2. State Key Lab of Rail Traffic Control & Safety, Beijing Jiaotong University, Beijing 100044, P. R. China

Abstract

Auditory training (AT) may strengthen auditory skills that help human not only in on-task auditory perception performance but in continuous speech-shaped noise (SSN) environment. AT based on musical material has provided some evidence for an “auditory advantage” in understanding speech-in-noise (SIN), but with a long period training and complex procedure. Experimental research is essential to develop a simplified method named auditory target tracking training (ATT) which refined from musical material is necessary to determine the benefits of training. We developed two kinds of refined AT method: basic auditory target tracking (BAT) training and enhanced auditory target tracking (EAT) training to adult participants ([Formula: see text]) separately for 20 units, assessing performance to perceive speech in noise environment after training. The EAT group presented better speech perception performance than the other groups and no significant differences between BAT group and control group. The training effect of EAT is the most significant when uni-gender SSN and [Formula: see text] dB. Outcomes suggest that efficacy of trained EAT can improve speech perception performance and selective attention during SSN environment. These findings provide an important link between musical-based training and auditory selective attention in real-world, and extended to special vocational training.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3