AN INTELLIGENT DEPRESSION DETECTION MODEL BASED ON MULTIMODAL FUSION TECHNOLOGY

Author:

CHENG ZIXUAN1ORCID,HUANG XISHENG1ORCID,DING YANG2ORCID

Affiliation:

1. School of Electronic and Information Engineering, Changchun University, Changchun 130022, P. R. China

2. Department of Radiotherapy, Affiliated Hospital, Jiangnan University, Wuxi, Jiangsu 214062, P. R. China

Abstract

Depression is a prevalent mental condition, and it is essential to diagnose and treat patients as soon as possible to maximize their chances of rehabilitation and recovery. An intelligent detection model based on multimodal fusion technology is proposed based on the findings of this study to address the difficulties associated with depression detection. Text data and electroencephalogram (EEG) data are used in the model as representatives of subjective and objective nature, respectively. These data are processed by the BERT–TextCNN model and the CNN–LSTM model, which are responsible for processing them. While the CNN–LSTM model is able to handle time-series data in an effective manner, the BERT–TextCNN model is able to adequately capture the semantic information that is included in text data. This enables the model to consider the various features that are associated with the various types of data. In this research, a weighted fusion technique is utilized to combine the information contained within the two modal datasets. This strategy involves assigning a weight to the outcomes of each modal data processing in accordance with the degree of contribution that each modal data will make to produce the ultimate depression detection results. In regard to the task of depression identification, the suggested model demonstrates great validity and robustness, as demonstrated by the results of the experimental validation that we carried out on a dataset that we manufactured ourselves. A viable and intelligent solution for the early identification of depression is provided by the proposed model. This solution will likely be widely utilized in clinical practice and will provide new ideas and approaches for the growth of the field of precision medicine.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3