CLASSIFICATION OF VENTRICULAR ECTOPIC BEATS (VEB'S) USING NEURAL NETWORKS

Author:

CHIKH M. A.1,BEREKSI–REGUIG F.2

Affiliation:

1. Laboratoire de Génie Biomédical, Département d'informatique, Faculté des Sciences de l'Ingénieur, Université Abou bekr Belkaid, Tlemcen B.P 119, pôle chetouane, 13000, Algérie

2. Laboratoire de Génie Biomédical, Département d'électronique, Faculté des Sciences de l'Ingénieur, Université Abou bekr Belkaid, Tlemcen B.P 119, pôle chetouane, 13000, Algéria

Abstract

The most widely used signal in clinical practice is the electrocardiogram (ECG). ECG conveys information regarding the electrical function of the heart, by altering the shape of its constituent waves, namely the P, QRS, and T waves. Thus, the required tasks of ECG processing are the reliable recognition of these waves, and the accurate measurement of clinically important parameters measured from the temporal distribution of the ECG constituent waves. The purpose of this paper is the classification of ventricular ectopic beats (VEB's). This research includes noise handling, feature extraction, and neural classification, all integrated in a three-stage procedure. Thirty features extracted from the morphology of the QRS segment, are reduced to seven coefficients using principal component analysis (PCA) and two coefficients using linear predictive coding (LPC) technique in addition to two other temporal parameters were used separately as the input of two neural network classifiers. The neural classifiers were tested on the MIT-BIH database and high scores were obtained for both sensitivity and specificity (84.88% and 91.92% respectively using ACP technique, and 76.17% and 88.95% using LPC method). This study confirms the power of artificial neural networks in the classification of normal and abnormal VEB beats. Clinical use of this method, however, still requires further investigation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Reference15 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ectopic beats detection and correction methods: A review;Biomedical Signal Processing and Control;2015-04

2. AUTOMATED DIAGNOSIS OF CARDIAC HEALTH USING RECURRENCE QUANTIFICATION ANALYSIS;Journal of Mechanics in Medicine and Biology;2012-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3