PD CONTROL WITH DESIRED GRAVITY COMPENSATION FOR A NOVEL DYNAMIC BRACE

Author:

NIU XINJIAN1,YANG CHIFU1,HAN JUNWEI1,CONG DACHENG1,ZHENG SHUTAO1,AGRAWAL SUNIL K.2

Affiliation:

1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, P. R. China

2. Robotics and Rehabilitation (ROAR) Laboratory, Department of Mechanical Engineering, Columbia University, New York 10027, USA

Abstract

A novel dynamic brace for the treatment of idiopathic scoliosis based on parallel-actuated robotic system is proposed in this paper. The new brace can apply corrective forces on patients’ spine actively to correct the abnormal spine. However, the gravity of the dynamic system results in some adverse impacts, such as reducing comfort degree of patients, accuracy loss of rehabilitation force control, big error in direction and value of force. To overcome this problem, a new active force control strategy, proportional-derivative (PD) control with desired-gravity-compensation (DGC), is proposed to improve the effectiveness of scoliosis rehabilitation. Considering the electrically driven system and the environment contacting with the brace, the dynamic model of the active brace system is derived using Kane method. Based on the above mentioned, the force controller with DGC is designed for the brace system to compensate the impact of system gravity. The brace experiment system is built and various experiment tests are performed to verify the proposed control strategy. Experiment results demonstrate that the proposed control strategy, PD control with DGC, can distinctly reduce the influence of the brace system gravity and has more efficient control effectiveness compared with the classical PID controller.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3