CFD MODELS FOR ANEURYSM ANALYSES AND THEIR USE IN IDENTIFYING THROMBOSIS FORMATION AND RISK ASSESSMENT

Author:

PAHLAVANI H.1,OZDEMIR I. B.1,YILDIRIM D.2

Affiliation:

1. Fluids Group, Faculty of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey

2. Department of Medical Imaging, Acibadem University, Istanbul, Turkey

Abstract

In this paper, the blood transport has been investigated using the single- and the two-phase methods. In the two-phase Euler–Euler approach, the blood is represented by two interpenetrating continua where the dispersed red blood cells (RBCs) of non-Newtonian characteristics are suspended in the continuous Newtonian plasma. The results of the two-phase model, where the RBC’s phase is assumed to be Carreau–Yasuda fluid, are validated against the experimental data. Furthermore, comparative analyses were performed in two patient-specific aneurysms, which indicated that for a given pulsatile flow rate, the two-phase blood approach is vitally advantageous over the single-phase assumption, and revealed a deeper inflow penetration, more complex flow structures and denser flow diversion zones in the aneurysm sac. It was obvious that the high OSI values calculated by the two-phase model covered much wider regions than the values predicted by the single-phase model. It was equally crucial that these regions coincided with the TAWSS values lower than the threshold that the single-phase approach can predict. Apparently, the single-phase model failed to spot sites of high rupture risk. The results were further exploited to identify the RBCs aggregation regions as, for example, the concave structures and narrow paths in the saccular aneurysms, for their possible use as the precursors of the thrombus formation.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3