A LUNG IMAGE CLASSIFICATION METHOD: A CLASSIFIER CONSTRUCTED BY COMBINING IMPROVED VGG16 AND GRADIENT BOOSTING DECISION TREE

Author:

WANG MONAN1ORCID,LI DONGHUI1,TANG LI1

Affiliation:

1. Harbin University of Science and Technology, Harbin 150080, P. R. China

Abstract

Early classification and diagnosis of lung diseases is essential to increase the best chance of patient recovery and survival. Using deep learning to make it possible, the key is how to improve the robustness of the deep learning model and the accuracy of lung image classification. In order to classify the five lung diseases, we used transfer learning to improve and fine-tune the fully connected layer of VGG16, and improve the cross entropy loss function, combined with the gradient boosting decision tree (GBDT), to establish a deep learning model called a classifier. The model was trained using the ChestX-ray14 dataset. On the test set, the classification accuracy of our model for the five lung diseases was 82.43%, 95.37%, 82.11%, 79.81%, 78.13%, which is better than the best published results. The F1 value is 0.456 (95% CI 0.415, 0.496). The robustness of the model exceeds CheXNet and average performance of doctors. This study clarified that the model has strong robustness and effectiveness in classifying five lung diseases.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A lightweight hybrid model for the automatic recognition of uterine fibroid ultrasound images based on deep learning;Journal of Clinical Ultrasound;2024-04-27

2. A Comprehensive Analysis of Implementing Convolutional Neural Networks (CNN) and InceptionV3 for Early-Lung Cancer Detection;2024 5th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI);2024-01-18

3. FISC: Furniture image style classification model based on Gram transformation;Proceedings of the 3rd International Conference on Advanced Information Science and System;2021-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3