NUMERICAL SIMULATIONS OF CHANGE IN TRABECULAR STRUCTURE DUE TO BONE REMODELING UNDER ULTRASOUND PROPAGATION

Author:

HOSOKAWA ATSUSHI1

Affiliation:

1. Department of Electrical and Computer Engineering, Akashi National College of Technology, 679-3 Nishioka, Uozumi, Akashi 674-8501, Japan

Abstract

Bone remodeling is defined as the coupling of bone formation and resorption on the bone surface. Numerical simulations of the remodeling in cancellous bone were performed to reproduce the change in the trabecular structure. Assuming that the formation/resorption in cancellous bone could be generated on the trabecular surface, where the local stress under the mechanical load was larger/smaller than the averaged stress on the surrounding surface, voxel trabecular elements in a numerical model of bovine cancellous bone were added/removed. An ultrasound continuous wave in the frequency range 0.1–1.0 MHz was applied as the mechanical load, and then, the local stress was analyzed using a finite-difference time-domain (FDTD) method. Using the remodeling simulations, both changes in the trabecular structure could be reproduced with decreasing and increasing porosity. In changes, the trabecular elements and the pore spaces became strongly oriented in the direction of ultrasound propagation. In addition, the remodeling simulations indicated that both bone formation and resorption lessened as the frequency increased.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of ultrasound on bone fracture healing: A computational mechanobioregulatory model;The Journal of the Acoustical Society of America;2019-02

2. Validation of Material Algorithms for Femur Remodelling Using Medical Image Data;Applied Bionics and Biomechanics;2017-12-26

3. TECHNOLOGIES FOR STRAIN ASSESSMENT FROM WHOLE BONE TO MINERALIZED OSTEOID LEVEL: A CRITICAL REVIEW;Journal of Mechanics in Medicine and Biology;2016-11

4. Computational Modeling of Ultrasound Wave Propagation in Bone;Computational Medicine in Data Mining and Modeling;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3