FINITE ELEMENT MODEL TO STUDY EFFECT OF Na+−Ca2+ EXCHANGERS AND SOURCE GEOMETRY ON CALCIUM DYNAMICS IN A NEURON CELL

Author:

JHA AMRITA1,ADLAKHA NEERU2,JHA BRAJESH KUMAR3

Affiliation:

1. Department of Science & Humanities, Indus University, Ahmedabad, Gujarat, India

2. Department of Applied Mathematics & Humanities, SVNIT, Gujarat, India

3. Department of Mathematics and Computer Science, SOT, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India

Abstract

The study of calcium diffusion in neuron cells has gained interest among research workers during the last two decades, due to its wide variety of roles in human body like muscle contraction, secretion, metabolism, signal transduction etc. Na[Formula: see text] is the first ion that comes in the hierarchy of ions affecting cytosolic Ca[Formula: see text] concentration. This Na[Formula: see text] ion helps in intracellular Ca[Formula: see text] regulation in cytosol via Na[Formula: see text]/Ca[Formula: see text] exchanger protein (NCX protein). Most of the theoretical investigations on calcium diffusion in neuron cells have been carried out for one and two dimensional cases by various research workers and that too by incorporating a point source of influx. In order to have more realistic study the more details of geometry, microstructure and physiological parameters need to be incorporated in the models. In view of above a three dimensional unsteady state model of Calcium dynamics in a neuron cell has been developed. Apart from the point source, the line and surface sources of an influx of Ca[Formula: see text]as well as the Na[Formula: see text]/Ca[Formula: see text] exchanger, have been incorporated in the model. Appropriate initial and boundary conditions have been framed. The region is discretized using three dimensional circular sectoral elements. Variational finite element method has been employed to obtain the solution. The numerical results have been computed to study effect of Na[Formula: see text]/Ca[Formula: see text] exchanger, point source, line source and surface source of an influx on Ca[Formula: see text] distribution in a neuron cell.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3