EFFECT OF LOW-FREQUENCY ELECTROMAGNETICS (LFE) ON MUSCLE SATELLITE CELLS DIFFERENTIATION AND IMMUNE SYSTEM IN RAT

Author:

BI JIAQI12,JING HONG2,ZHOU CHENLIANG3,GAO PENG4,HAN FUJUN3,LI GANG5,SHI DONGFANG1

Affiliation:

1. College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, P. R. China

2. Harbin Children’s Hospital, Harbin 150010, Heilongjiang, P. R. China

3. Emergency Department, SongBei Hospital of The Fourth Hospital, Affiliated of Harbin Medical University, Harbin 150021, Heilongjiang, P. R. China

4. The First Department of General Surgery, Harbin Children’s Hospital, Harbin 150010, Heilongjiang, P. R. China

5. The Second Department of Orthopedics, The First Hospital of Yichun Yichun, 153000, Heilongjiang, P. R. China

Abstract

Spinal cord injury (SCI) is a severe neurological disease. Although surgery within 8[Formula: see text]h after SCI can substantially reduce paraplegia, most patients still suffer from hypomusculariasis after neuron recovery, which results in insufficient lower limb muscles to support bodyweight. Currently, there is no effective method to prevent muscle atrophy. Previous studies have shown that low-frequency electromagnetics (LFE) can stimulate the differentiation, proliferation and fusion of muscle satellite cells, however, the optimal electromagnetic strength and effects on the immune system have not been established. Here, we investigated the influence of LFE at different electromagnetic strengths on muscle cell recovery and assessed the impact of chronic LFE on the immune system of SCI rats. The rat immune system was rapidly activated after SCI. High-energy LFE provoked intensive immune responses, while low-energy LFE did not affect immune responses. Simultaneously, LFE effectively prevented myotube reduction and atrophy in SCI rats. The mRNA and protein levels of Pax7 and MyoD were increased after LFE at both high and low electromagnetic strengths, with the latter leading to more robust increases. Indeed, LFE remarkably induced muscle cell fusion. Together, our results demonstrated that LFE activates muscle satellite cells via stimulating myogenic factors. Chronic low-energy LFE is a safe therapy with no adverse impact on the immune system of SCI rats. LFE with 1.5 mT energy should be considered as an optimal therapeutic strategy.

Funder

High-level Introduction Project

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3