MAC: EPILEPSY EEG SIGNAL RECOGNITION BASED ON THE MLP-SELF-ATTENTION MODEL AND COSINE DISTANCE

Author:

LI PEIJUAN1ORCID,LIU YITING23ORCID,CAI WEI4ORCID,LIU XIN1ORCID

Affiliation:

1. Industrial Center, Nanjing Institute of Technology, Nanjing 211167, P. R. China

2. School of Automation, Nanjing Institute of Technology, Nanjing 211167, P. R. China

3. School of Information Science and Engineering, Southeast University, Nanjing 210096, P. R. China

4. School of Computer Engineering, Nanjing Institute of Technology, Nanjing 211167, P. R. China

Abstract

In current epilepsy disease research, accurate identification of epilepsy electroencephalogram (EEG) signals is crucial for improving diagnostic efficiency and developing personalized treatment plans. This study proposes an innovative epilepsy recognition model, MAC, which combines the unique advantages of a multilayer perceptron (MLP), a self-attention mechanism and the cosine distance. This model uses a MLP as the basic model and effectively reduces individual differences among epilepsy patients through its superior linear fitting ability. To more accurately measure the difference between two EEG signals, we introduced the cosine distance as a new feature metric. This metric enhances the performance of epilepsy EEG classification by using the cosine value of the angle in vector space to precisely assess the difference between two individuals. In addition, we introduced a self-attention mechanism into the model to enhance the impact of various factors on the final EEG data. Our experiments employed the EEG database of the Epilepsy Research Center of the University of Bonn. Through comparative experiments, it was proven that the proposed MAC model achieved significant improvement in performance on the epilepsy EEG signal recognition task. This study fills the existing research gap in the field of epilepsy identification and provides a powerful tool for the accurate diagnosis of epilepsy diseases in the future. We believe that the introduction of the MAC model will promote new breakthroughs in epilepsy EEG signal recognition and lay a solid foundation for the development of related fields. This research provides an important theoretical and practical reference for advancing the field of epilepsy identification.

Funder

the China Postdoctoral Science Foundation

the Jiangsu Postdoctoral Research Funding Program

2021 Provincial Key R&D Program

the Nanjing Institute of Technology

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3