NUMERICAL SIMULATION OF PRESSURE-INDUCED CELL PRINTING

Author:

ABEDINI HASSAN1,MOVAHED SAEID2,ABOLFATHI NABIOLLAH1

Affiliation:

1. Department of Biomedical Engineering, AmirKabir University of Technology (Tehran Polytechnic), Tehran, Iran

2. Department of Mechanical Engineering, AmirKabir University of Technology (Tehran Polytechnic), Tehran, Iran

Abstract

Nowadays, because of great biomedical applications of state-of-the art prototyping (bio-printing), many studies have been conducted in this field with focus on three-dimensional prototyping. There are several mechanisms for bio-printing of live cells such as piezoelectric and thermal and pneumatic inkjeting systems. Cell viability should be preserved during the bio-printing process. Lots of researches have been carried out to investigate and compare cell viability through different prototyping mechanisms. In order to quantify percentage of the cells that are killed during the proto-typing process, applied stresses on the cell and consequently its deformation should be calculated. A maximum strain energy density that the cell can tolerate is reported in the range of 25 Kj ⋅ m-3 to 100 Kj ⋅ m-3. This can be considered as a criteria to find the percentage of the damaged cells during the bio-printing processes. In this study, the bio-printing of the cell has been modeled and the cell viability have been investigated. Firstly, it is shown that in modeling of the bio-printing process, the effects of dynamic flow on calculating the applied stress on the cell is not negligible and must be considered. In the next step, the percentage of damaged endothelial cell aggregate under 80 kPa applied pressure (64 MPa/m) and 200 micron nozzle diameter is reported. Based on findings of this study, the percentage of endothelial cells viability under mentioned condition is reported 76%. The proposed method of this study can be utilized to examine the cell viability and performance of each prototyping systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3