HEMODYNAMIC EFFECT OF OBSTRUCTION TO RENAL ARTERIES CAUSED BY STENT GRAFTS IN PATIENTS WITH ABDOMINAL AORTIC ANEURYSMS

Author:

LIU MING1,SUN ANQIANG12,DENG XIAOYAN12

Affiliation:

1. Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science & Medical Engineering, Beihang University, Beijing 100083, P. R. China

2. Beijing Advanced Innovation, Centre for Biomedical Engineering, Beihang University, Beijing 100083, P. R. China

Abstract

To investigate the hemodynamic effects of partial obstruction to the renal orifice caused by inappropriate stent-graft location. Pre-operative and deployment models of a stent graft with various degrees of obstruction to the renal orifice are constructed based on medical images of abdominal aortic aneurysm. Hemodynamics, including flow pattern, time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), as well as relative residence time (RRT) are analyzed using numerical simulations. Flow rate distributions are assessed and verified by in vitro experiments. Results show that partial blockage to the renal branch orifice leads to flow recirculation and vortices with low wall shear stress around the renal ostia, whereas OSI and RRT on the renal arteries increase with the degree of obstruction. While the in vitro experiment indicates a decreasing flow rate to the bilateral renal arteries as renal artery ostia are obstructed. In conclusion, obstruction to the renal arteries induced by an inappropriate stent graft location causes stenosis in the renal artery in the long term. This study reveals a possible pathological mechanism of renal complications due to the implantation of a stent graft.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3