NUMERICAL SIMULATION OF DILATION PATTERNS OF THE ASCENDING AORTA IN AORTOPATHIES

Author:

OLIVEIRA DIANA C.1,LARANJO SÉRGIO2,TIAGO JORGE3,PINTO FÁTIMA F.2,SEQUEIRA ADÉLIA3

Affiliation:

1. Department of Bioengineering and CEMAT, Instituto Superior Técnico, Ulisboa Av. Rovisco Pais, 1 1049-001 Lisboa, Portugal

2. Pediatric Cardiology Department, Congenital Heart Diseases Reference Centre, Hospital de Santa Marta (CHLC), Rua de Santa Marta 50 1169-024 Lisboa, Portugal

3. Department of Mathematics and CEMAT, Instituto Superior Técnico, Ulisboa Av. Rovisco Pais, 1 1049-001 Lisboa, Portugal

Abstract

Aortic dilation is associated with congenital bicuspid aortic valve (BAV) disease, and its etiology is still not completely understood. The aim of this study is to provide further insight into aortic hemodynamics in a BAV population with different degrees of aortic dilation and regurgitation in comparison with a patient without pathology. A fluid–structure interaction (FSI) numerical approach is implemented regarding patient-specific geometries, where the aortic valves are defined by analytical orifices. Results show that, while the patient without pathology displays a typical hemodynamic behavior of flows in bends, BAV-related aortas present an accelerated flow along the outer aortic wall. Wall shear stress (WSS) overload in the outer curvature is observed, more marked in more dilated aortas. Moreover, helices in the ascending aorta are present in these patients, enhanced with greater dilation. These findings support the fact that hemodynamic factors play an important role in aortic dilation onset and development in BAV patients, caused by a prolonged exposure of the outer ascending aortic curvature to altered WSS. Besides, our results suggest that greater aortic regurgitation may be associated with abnormal WSS distributions in the ascending aorta during diastole, which can facilitate aortic root dilation.

Funder

Fundação para a Ciência e a Tecnologia

the Research Project

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3