INSIGHTS INTO HUMAN LOCOMOTION STRATEGIES AND MOTOR LEARNING FOR AN AGEING POPULATION USING TRANSFER TESTING AND COUPLED SIMULATIONS

Author:

NOWAKOWSKI KATHARINE1ORCID,CARVALHO PHILIPPE2ORCID,EL KIRAT KARIM1ORCID,DAO TIEN-TUAN3ORCID

Affiliation:

1. Université de Technologie de Compiègne, Alliance Sorbonne Universités, CNRS, UMR 7338 Biomécanique et Bio-ingénierie, Centre de recherche Royallieu, CS 60 319 Compiègne, France

2. UMR C.N.R.S, 7253 Heudiasyc, Université de Technologie de Compiègne Compiègne, 60203, France

3. Univ. Lille, CNRS, Centrale Lille, UMR 9013 - LaMcube - Laboratoire de Mécanique, Multiphysique, Multiéchelle, F-59000 Lille, France

Abstract

The elucidation of human locomotion strategies has potential applications in the prevention of sarcopenia and in the reduction of falls. Given the diverse biochemical, mechanical and functional age-related changes seen in the neuro-musculoskeletal system, the decline in motor function is difficult to study experimentally. In this study, we use transfer testing and coupled simulation strategies within a deep reinforcement learning environment to better understand the complex problem of motor control adaptation to age-related changes. Using transfer testing, a 3D musculoskeletal model is separately trained on parameters of the young adult model (Y) for either forward or backward falls after completing two steps forward, and tested using a 30% age-related reduction for all parameters (M_all). This strategy produces a backward fall for a forwardly trained simulation, showing potential sensitivity of these parameters to a given fall direction. Second, a coupled simulation solution is used to simulate recovery from falls by considering the center-of-mass position relative to the base of support. Results for the M_all trained model showed a longer simulation time and a greater vertical pelvis velocity with a maximal value of 4.26[Formula: see text]m/s. In particular, the results of the coupled simulations clearly show that both the young and M_all condition models respond with a step back and stronger leg extensor activations to propel the model forward to recover from the simulated fall. We developed a novel coupling between transfer testing and coupled simulation strategies to improve upon muscle models for characterizing muscle function, and also to begin testing different hypotheses, such as the strategy and force required to avoid a fall at different limits. This opens new avenues for precision rehabilitation with patient-specific muscle-driven recovery exercises.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3