A NOVEL STRUCTURE DESIGN OF BIODEGRADABLE ZINC ALLOY STENT AND ITS EFFECTS ON RESHAPING STENOTIC VESSEL

Author:

PENG KUN1ORCID,QIAO AIKE12ORCID,WANG JUNJIE1,OHTA MAKOTO3,CUI XINYANG1,MU YONGLIANG4

Affiliation:

1. Beijing University of Technology, Beijing 100124, P. R. China

2. College of Life Science and Bioengineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing 100124, P. R. China

3. Tohoku University, Sendai, Miyagi 980-8577, Japan

4. Northeastern University, Shenyang, Liaoning 110819, P. R. China

Abstract

Biodegradable zinc alloy stents offer a prospective solution to mitigate incompatibility between artery and permanent stents. However, biodegradable stents are restricted in clinical therapy mainly because of their insufficient support for opening of stenotic vessel. As an effort to resolve this challenging problem, a novel structure of zinc alloy stent which significantly enhanced scaffold performance is proposed in this paper. Subsequently, the functionality of the new stent on reshaping vessels with 40% of stenosis was investigated in contrast with a common stent via finite element analysis. The simulation results show that radial recoiling ratio and dog-boning ratio of the new stent are decreased by 43.2% and 16.3%, respectively, compared with those of the common stent. A larger and flatter lumen is found in the plaque-vessel system deployed with the new stent. It suggests that the geometry of stent has strong influence on its mechanical performance. With strong scaffold capability and brilliant effect on reshaping stenotic vessel, the biodegradable zinc alloy stent-based novel structure is highly promised to be an alternative choice in interventional surgeries.

Funder

Major Project of Science and Technology of Beijing Municipal Education Commission and Type B Project of Beijing Natural Science Foundation

General Collaborative Research Project of the Institute of Fluid Science, Tohoku University

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3