SIMULATION OF CELL MOTION IN THE MICROCHANNEL WITH A SQUARE CAVITY

Author:

XUANJUN SONG1,LANLAN XIAO1ORCID,CHENSEN LIN2ORCID,SHUO CHEN2,YANG LIU3

Affiliation:

1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, P. R. China

2. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, P. R. China

3. Department of Mechanical Engineering, the Hong Kong Polytechnic University, Hong Kong, P. R. China

Abstract

Isolating circulating tumor cells (CTCs) from the blood plays an important role in the specific treatment of tumor diseases. In this study, a dissipative particle dynamics method combined with a spring-based cell model was employed to simulate the motion of a single or two cells in the microchannel with a square cavity. For a single cell with a small diameter, it will be captured by the square cavity at an appropriate flow rate. For cells whose diameter is not small enough compared to the opening size of the square cavity, they will not be captured at any flow rate. Based on this, cells of different sizes could be successfully separated when passing through this microchannel. Through the analysis of the flow behavior of uncaptured cells, the movement of cells in microchannels is divided into four stages: “guiding,” “rapid,” “slow”, and “ascending” according to the lateral movement speed and centroid position of cells. When the CTC moves together with a red blood cell, as the flow rate decreases, it would be trapped by the microcavity, whereas the RBC is not captured. Thus, CTC can be isolated from blood samples of cancer patients. The method of predicting cell movement behavior through simulation can also provide some reference for the design of microfluidic channels.

Funder

National Natural Science Foundation of China

Shanghai Science and Technology Talent Program

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3