MODELING BLOOD FLOW IN AN ECCENTRIC STENOSED ARTERY USING LARGE EDDY SIMULATION AND PARALLEL COMPUTING

Author:

BAHRAMIAN FERESHTEH1,MOHAMMADI HADI2

Affiliation:

1. Biomedical Engineering Graduate Program, Faculty of Applied, Science University of British Columbia, Vancouver, BC, Canada

2. School of Engineering, Faculty of Applied Science University of British, Columbia, Okanagan, Kelowna, BC, Canada

Abstract

Computational fluid dynamics (CFD) is an excellent computational tool to assess the hemodynamics and detailed blood-flow structure for cardiovascular applications. Modeling turbulence for cardiovascular applications can be achieved (to some extent) using available numerical models such as Reynolds average Navier–Stokes (RANS), the large eddy simulation (LES) and the direct numerical solution (DNS). In order to develop an efficient model which is as accurate as DNS and as quick as RANS, our laboratory's focus is on LES. In this study, we develop an efficient numerical model which is based on LES and structured but non-orthogonal finite volumes. Using the proposed model, the detailed flow structure and turbulent features of the blood stream in a complicated geometry is captured. The aim of this study is to model blood-flow through an eccentric stenosis accurately and quickly. The results are similar to those obtained using DNS but in a fraction of the CPU time. The computational tools implemented in this study are based on a FORTRAN based in-house code coupled with parallel computing using SHARCNET. The developed model is a significant computational tool which can be used to assess the hemodynamic properties for cardiovascular applications, e.g., prosthetic heart valves and atherosclerosis.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3