ANALYSIS OF INDUCED ISOMETRIC FATIGUING CONTRACTIONS IN BICEPS BRACHII MUSCLES USING MYOTONOMETRY AND SURFACE ELECTROMYOGRAPHIC MEASUREMENTS

Author:

BANERJEE SHIB SUNDAR1ORCID,SADHUKHAN DEBOLEENA1ORCID,ARUNACHALAKASI AROCKIARAJAN2ORCID,SWAMINATHAN RAMAKRISHNAN1ORCID

Affiliation:

1. Non-Invasive Imaging and Diagnostic Laboratory, Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600 036, India

2. Smart Material Characterization Lab, Solid Mechanics Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600 036, India

Abstract

Viscoelastic properties of skeletal muscle tissue are known to be impacted by fatiguing contractions. In this study, an attempt has been made to utilize myotonometry for analyzing the relationship between muscle viscoelasticity and contractile behaviors in a fatiguing task. For this purpose, thirteen young healthy volunteers are recruited to perform the fatiguing isometric task and the time to task failure (TTF) is recorded. Myotonometric parameters and simultaneous surface electromyographic (sEMG) signals are recorded from the Biceps Brachii muscle of the flexed arm. The correlation between myotonometric parameters and TTF is further analyzed. Cross-validation with sEMG features is also performed. Stiffness of muscle has a positive correlation with TTF in the left hand ([Formula: see text]). Damping property of the nonfatigued muscle is positively associated with the fatigue-induced changes in amplitude features of sEMG signal in the right hand ([Formula: see text]). The normalized rate of change of mean frequency of sEMG signal has a positive correlation with stiffness values in both of the hands ([Formula: see text]). Muscle viscoelasticity is demonstrated to influence the progression of fatigue, although the difference in motor control due to handedness is also found to be an important factor. The results are promising to improve the understanding of the effect of muscle mechanics in fatigue-induced task failure.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3