THE EFFECT OF IMPLANTABLE TRANSDUCERS ON MIDDLE EAR TRANSFER FUNCTION — A COMPARATIVE NUMERICAL ANALYSIS

Author:

LIU HOUGUANG1,GE SHIRONG1,CHENG GANG1,YANG JIANHUA1,RAO ZHUSHI2,HUANG XINSHENG3

Affiliation:

1. School of Mechatronic Engineering, China University of Mining and Technology, Da Xue Road No. 1, Xuzhou 221116, P. R. China

2. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, P. R. China

3. Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Feng Lin Road No. 180, Shanghai 200032, P. R. China

Abstract

Several types of middle ear implants (MEIs) have been invented as an alternative to conventional hearing aids for the rehabilitation of sensorineural hearing loss. Temporal bone and clinical studies have shown that the implantation of MEIs’ transducers influences middle ear transfer function. But there is little comparative data available about these influences. We conducted comparative studies on the influences of three principal types of MEI transducers in respect to their attachment points on the ossicular chain. To aid the investigation, a human middle ear finite element model was constructed. The model was built based on a complete set of micro-computerized tomography section images of a human ear by reverse engineering technology. The validity of the developed model was verified by comparing the motions obtained by this model with published experimental measurements on human temporal bones. The results show that the eardrum driving transducer (EDT) and the floating mass transducer (FMT) decrease stapes displacement prominently at high frequencies. The greater these transducers’ mass, the smaller is the displacement of the stapes footplate. In contrast, the incus body driving transducer (IBDT) decreases stapes displacement severely at low frequencies, and its adverse effect on residual hearing increases with increasing stiffness of the IBDT’s driving rod.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3