A CARDIAC MOTION MODEL TO EVALUATE INTRA-FRACTION DOSIMETRIC VARIATIONS IN RADIOTHERAPY TREATMENTS

Author:

MAFFEI NICOLA1ORCID,MEDURI BRUNO2,ITTA FRANCESCA1,NAVEED ASHRAF3,GUTIERREZ MARIA VICTORIA1,D’ANGELO ELISA2,MAZZEO ERCOLE2,LOHR FRANK2,GUIDI GABRIELE1

Affiliation:

1. Medical Physics Department, University Hospital of Modena, Largo del Pozzo 71, Modena 41124, Italy

2. Radiotherapy Unit, Department of Oncology and Hematology, University Hospital of Modena, Largo del Pozzo 71, Modena 41124, Italy

3. Department of Physics, UNIMORE, Via G. Campi 213, Modena 41125, Italy

Abstract

Purpose: A cardiac cycle model was implemented to simulate cardiac motion during radiotherapy to evaluate the intra-fraction dosimetric impact on cardiac sub-structures comparing different planning techniques. Methods: Cardiac sub-structures were automatically contoured in 10 CTs acquired in deep inspiration breath hold (DIBH) by using a recently developed hierarchical-clustering atlas-based algorithm. A deformable image registration algorithm was used to simulate the cardiac motion cycle based on volume variations available in the literature. Two synthetic CTs were created and contoured simulating contraction and expansion during the cardiac cycle. Ninety radiotherapy plans were calculated using three radiotherapy paradigms: tangential fields planned as Linac-3D-CRT with a steep linear dose gradient toward the heart-modulated therapy with an intermediately steep concave gradient of intermediate-to-high doses toward the heart, planned as Linac-VMAT; modulated therapy with a steep concave gradient of intermediate-to-high doses toward the heart, planned as helical tomotherapy. Python scripts were developed for autocontouring, automatic creation of synthetic CTs and data extraction. Results: Comparison between paradigms shows that different constraints (maximal gradient toward heart/lung versus maximal sparing of contralateral breast/axilla) do not necessarily result in preferred or reduced heart sparing, but this depends more on individual anatomy. A planning paradigm with an intermediate-steepness dose gradient showed the best robustness against intra-fraction organ motion. Conclusions: Patient-specific organ motion models may reduce differences between planned and delivered RT and may thus help to refine dose–volume–toxicity models for cardiac sub-structures and, as a consequence, clinical constraints. Automatized plan recalculation on synthetic image sets might be used for robustness optimization and evaluation.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3