SELF-ASSEMBLED SCAFFOLDS USING REACTION–DIFFUSION SYSTEMS: A HYPOTHESIS FOR BONE REGENERATION

Author:

GARZÓN-ALVARADO DIEGO A.1,VELASCO MARCO A.2,NARVÁEZ-TOVAR CARLOS A.23

Affiliation:

1. Engineering Modeling and Numerical Methods Group National University of Colombia Cra 30 No. 45-03, Bogotá, Colombia

2. Mechanical Engineering Applications and Research Group, Santo Tomás University, Cra 9 No. 51-11, Bogotá, Colombia

3. Engineering Modeling and Numerical Methods Group, National University of Colombia, Cra 30 No. 45-03, Bogotá, Colombia

Abstract

One area of tissue engineering concerns research into alternatives for new bone formation and replacing its function. Scaffolds have been developed to meet this requirement, allowing cell migration, bone tissue growth, transport of growth factors and nutrients, and the improvement of the mechanical properties of bone. Scaffolds are made from different biomaterials and manufactured using several techniques that, in some cases, do not allow full control over the size and orientation of the pores characterizing the scaffold. A novel hypothesis that a reaction–diffusion (RD) system can be used for designing the geometrical specifications of the bone matrix is thus presented here. The hypothesis was evaluated by making simulations in two- and three-dimensional RD systems in conjunction with the biomaterial scaffold. The results showed the methodology's effectiveness in controlling features such as the percentage of porosity, size, orientation, and interconnectivity of pores in an injectable bone matrix produced by the proposed hypothesis.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3