Affiliation:
1. Mathematics and Computer Science Department, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
Abstract
Let K be a number field, nK be its degree, and dK be the absolute value of its discriminant. We prove that, if dK is sufficiently large, then the Dedekind zeta function ζK(s) has no zeros in the region: [Formula: see text], [Formula: see text], where log M = 12.55 log dK + 9.69nK log |ℑ𝔪 s| + 3.03 nK + 58.63. Moreover, it has at most one zero in the region:[Formula: see text], [Formula: see text]. This zero if it exists is simple and is real. This argument also improves a result of Stark by a factor of 2: ζK(s) has at most one zero in the region [Formula: see text], [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献