Affiliation:
1. Department of Mathematics and Statistics, University of Victoria, Victoria, U8W 3P4, Canada
Abstract
We consider the notion of a balanced set modulo N. A nonempty set S of residues modulo N is balanced if for each x ∈ S, there is a d with 0 < d ≤ N/2 such that x ± d mod N both lie in S. We define α(N) to be the minimum cardinality of a balanced set modulo N. This notion arises in the context of a two-player game that we introduce and has interesting connections to the prime factorization of N. We demonstrate that for p prime, α(p) = Θ( log p), giving an explicit algorithmic upper bound and a lower bound using finite field theory and show that for N composite, α(N) = min p|Nα(p).
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献