Affiliation:
1. Department of Mathematics and Statistics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6, Canada
2. Department of Mathematics, Texas A&M University, College Station, Texas 77843, USA
Abstract
We call the polynomial [Formula: see text] a Barker polynomial of degree n-1 if each aj ∈{-1, 1} and [Formula: see text] Properties of Barker polynomials were studied by Turyn and Storer thoroughly in the early sixties, and by Saffari in the late eighties. In the last few years P. Borwein and his collaborators revived interest in the study of Barker polynomials (Barker codes, Barker sequences). In this paper we give a new proof of the fact that there is no Barker polynomial of even degree greater than 12, and hence Barker sequences of odd length greater than 13 do not exist. This is intimately tied to irreducibility questions and proved as a consequence of the following new result. Theorem.Ifn ≔ 2m + 1 > 13and[Formula: see text]where eachbj ∈{-1, 0, 1}for even values of j, each bj is an integer divisible by 4 for odd values of j, then there is no polynomial[Formula: see text]such that[Formula: see text], where[Formula: see text]and[Formula: see text]denotes the collection of all polynomials of degree 2m with each of their coefficients in {-1, 1}. A clever usage of Newton's identities plays a central role in our elegant proof.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献