Spinor representations of positive definite ternary quadratic forms

Author:

Ju Jangwon1,Kim Kyoungmin2,Oh Byeong-Kweon13

Affiliation:

1. Department of Mathematical Sciences, Seoul National University, Seoul 08826, Korea

2. Department of Mathematics, Sungkyunkwan University, Suwon 16419, Korea

3. Research Institute of Mathematics, Seoul National University, Seoul 08826, Korea

Abstract

For a positive definite integral ternary quadratic form [Formula: see text], let [Formula: see text] be the number of representations of an integer [Formula: see text] by [Formula: see text]. The famous Minkowski–Siegel formula implies that if the class number of [Formula: see text] is one, then [Formula: see text] can be written as a constant multiple of a product of local densities which are easily computable. In this paper, we consider the case when the spinor genus of [Formula: see text] contains only one class. In this case the above also holds if [Formula: see text] is not contained in a set of finite number of square classes which are easily computable. By using this fact, we prove some extension of the recent results on both the representations of generalized Bell ternary forms and the representations of ternary quadratic forms with some congruence conditions.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The number of representations of integers by generalized Bell ternary quadratic forms;International Journal of Number Theory;2020-09-24

2. Ternary universal sums of generalized polygonal numbers;International Journal of Number Theory;2019-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3