Affiliation:
1. Department of Mathematics, Georg-August-Universität Göttingen, Germany
Abstract
We prove a bound on the number of primes with a given splitting behavior in a given field extension. This bound generalizes the Brun–Titchmarsh bound on the number of primes in an arithmetic progression. The proof is set up as an application of Selberg’s Sieve in number fields. The main new ingredient is an explicit counting result estimating the number of integral elements with certain properties up to multiplication by units. As a consequence of this result, we deduce an explicit estimate for the number of ideals of norm up to [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献