ON MODULAR GALOIS REPRESENTATIONS MODULO PRIME POWERS

Author:

CHEN IMIN1,KIMING IAN2,WIESE GABOR3

Affiliation:

1. Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada

2. Department of Mathematics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark

3. Faculté des Sciences, de la Technologie et de la Communication, Université du Luxembourg, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg

Abstract

We study modular Galois representations mod pm. We show that there are three progressively weaker notions of modularity for a Galois representation mod pm: We have named these "strongly", "weakly", and "dc-weakly" modular. Here, "dc" stands for "divided congruence" in the sense of Katz and Hida. These notions of modularity are relative to a fixed level M. Using results of Hida we display a level-lowering result ("stripping-of-powers of p away from the level"): A mod pm strongly modular representation of some level Npr is always dc-weakly modular of level N (here, N is a natural number not divisible by p). We also study eigenforms mod pm corresponding to the above three notions. Assuming residual irreducibility, we utilize a theorem of Carayol to show that one can attach a Galois representation mod pm to any "dc-weak" eigenform, and hence to any eigenform mod pm in any of the three senses. We show that the three notions of modularity coincide when m = 1 (as well as in other particular cases), but not in general.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The theta cycles for modular forms modulo prime powers;Forum Mathematicum;2023-03-31

2. On the level raising of cuspidal eigenforms modulo prime powers;The Ramanujan Journal;2019-09-21

3. Congruences modulo prime powers of Hecke eigenvalues in level 1;Research in Number Theory;2019-01-02

4. Dihedral Group, 4-Torsion on an Elliptic Curve, and a Peculiar Eigenform Modulo 4;Symmetry, Integrability and Geometry: Methods and Applications;2018-06-13

5. Filtrations of dc-weak eigenforms;Acta Arithmetica;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3