Affiliation:
1. Department of Mathematics, Brown University, 151 Thayer St., Providence, RI 02912, USA
Abstract
From a result of Waldspurger [W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip, Invent. Math.64 (1981) 175–198], it is known that the normalized Fourier coefficients a(m) of a half-integral weight holomorphic cusp eigenform 𝔣 are, up to a finite set of factors, one of [Formula: see text] when m is square-free and f is the integral weight cusp form related to 𝔣 by the Shimura correspondence [G. Shimura, On modular forms of half-integral weight, Ann. of Math.97 (1973) 440–481]. In this paper we address a question posed by Kohnen: which square root is a(m)? In particular, if we look at the set of a(m) with m square-free, do these Fourier coefficients change sign infinitely often? By partially analytically continuing a related Dirichlet series, we are able to show that this is so.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献