Document Summarization Using Sentence-Level Semantic Based on Word Embeddings

Author:

Al-Sabahi Kamal1,Zuping Zhang1

Affiliation:

1. School of Information Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China

Abstract

In the era of information overload, text summarization has become a focus of attention in a number of diverse fields such as, question answering systems, intelligence analysis, news recommendation systems, search results in web search engines, and so on. A good document representation is the key point in any successful summarizer. Learning this representation becomes a very active research in natural language processing field (NLP). Traditional approaches mostly fail to deliver a good representation. Word embedding has proved an excellent performance in learning the representation. In this paper, a modified BM25 with Word Embeddings are used to build the sentence vectors from word vectors. The entire document is represented as a set of sentence vectors. Then, the similarity between every pair of sentence vectors is computed. After that, TextRank, a graph-based model, is used to rank the sentences. The summary is generated by picking the top-ranked sentences according to the compression rate. Two well-known datasets, DUC2002 and DUC2004, are used to evaluate the models. The experimental results show that the proposed models perform comprehensively better compared to the state-of-the-art methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Text Summarization Method Based on Improved TextRank Algorithm and K-Means Clustering;Knowledge-Based Systems;2024-03

2. Impact of Similarity Measures in Graph-based Automatic Text Summarization of Konkani Texts;ACM Transactions on Asian and Low-Resource Language Information Processing;2023-02-21

3. Malay lexical simplification model for non-native speaker;2022 International Conference on Intelligent Systems and Computer Vision (ISCV);2022-05-18

4. Exploiting Semantic Term Relations in Text Summarization;International Journal of Information Retrieval Research;2022-01

5. Similar case matching with explicit knowledge-enhanced text representation;Applied Soft Computing;2020-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3